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ABSTRACT 

We calculate the partial width for the tree level decay of the 2 boson into four mas- 

sive fermions at O(OL’) and O(a:). Analytic expressions for the helicity amplitudes 

are presented. We also present ‘observable’ widths for the case when the fermions 

are energetic and well separated, and make a comparison between the massive and 

massless matrix elements in this region. We make a direct comparison between 

the four fermion decay and the production and decay of the Higgs boson via the 

Bjorken mechanism, Z + Hpfp- + qqp+p-. Provided the detector resoiution 

is good, An+ - few GeV, the Higgs signal stands clearly above the four fermion 

background for ail Higgs boson masses considered. 
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1 Introduction 

Although the 2 boson was first discovered in 1983 [I], it is only recently that its proper- 

ties have begun to be studied in detail by experiments at LEP and SLC. With only a few 

thousand events, the four LEP experiments have measured the mass, Mz and width, IJz 

with a precision that surpasses that previously achieved. As the number of 2 events rapidly 

increases, new, hitherto unobserved, decay modes will become accessible and may directly 

or indirectly hint at new physics. Since new physics tends to manifest itself as multi-particle 

final states consisting of the known leptons and hadrons, it is important to have a good 

understanding of multi-particle decays within the standard model. 

In this paper we will be concerned with the decay of the 2 boson into four fermions 

described by the generic Feynman diagrams shown in Fig. 1. When the exchanged vector 

bosom are either photons or 2 bosons, the four fermion decay contributes at O(&). In prin- 

ciple, these decay widths are contained in the Daverveldt Monte Carlo [2,3] which contains a 

complete description of four fermion production via e+e- annihilation. Although the original 

program [3] contained only the 36 photon exchange graphs, the possibility of exchanging 2 

bosons has subsequently been included. This program includes all mass effects and the con- 

tributions from multiperipheral diagrams in addition to the annihilation diagrams considered 

here. Up to 144 diagrams contribute to the total e+e- -+ ffff rate and the calculation is 

only made possible by determining which amplitudes and classes of diagrams may be safely 

neglected for a given momentum configuration without altering the total cross section. Due 

to the complexity of the program, it is difficult to extract the contribution from the decay 

of the Z boson which we are interested in here. 

The particularly interesting decay Z + q$+L- decay has also been studied in Ref. (41. 

This decay is interesting because it may provide a background for the discovery of the Higgs 

boson at LEP or SLC. If the Higgs boson is relatively light, Ma 5 50 GeV, it may be 

copiously produced via the Bjorken process [5], 

Z + HZ’ -+ Hff, (1.1) 

which may have a branching rate as large as lo- ‘. Limits from CUSB [6] and other low energy 

experiments tend [7] to rule out a Higgs lighter than 3 or 4 GeV, so that the preferred decay 

modes of the Higgs are H -+ T+T-, CE or b6. The signal is then typically a quark pair with 
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invariant mass mvq - VLH recoiling against the decay products of the virtual Z which tend to 

be concentrated at large invariant mass, m(+(- - Mr - mu. Although a conclusive analysis 

of the signal to background ratio requires a full study of the e+e- -+ Hff + ffyf’ and 

e+e- + fff’f’ processes, a comparison of the bare Z boson decay suggests [8] that the four 

fermion decay is not a severe background when the fermions are energetic and well separated. 

We organise this paper as follows. In section 2 we use spinor techniques to derive com- 

pact analytic expressions for the helicity amplitudes contributing to Z boson decay into four 

fermions including ail mass effects. By constructing generic helicity amplitudes for the ex- 

changed vector bosons, our helicity amplitudes can be applied to both O(as) and O(ai) four 

fermion decay. In the limit of massless fermions, the helicity amplitudes simplify enormously 

and lead to a fast approximate form for the matrix elements. We then numerically integrate 

the matrix elements over the four particle phase space to obtain the partial widths. Since 

there are many singular regions in the phase space, the correct choice of integration vari- 

ables is important and these are described in section 3. Our numerical results are contained 

in section 4 where we also make a direct comparison between the four fermion decay and 

the production and decay of Higgs bosons in Z decay. When the fermions are energetic 

and well separated, the effect of the fermion mass is rather small and we compare both the 

massive and massless matrix elements in this region. The decay of the Z boson into four 

19,101 and even five [11,12] jets has been studied in the limit of massless partons. Since the 

partial widths for the O(a:) decay into four massive quarks are easily obtained from the 

helicity amplitudes presented here, we compute the partial widths for the production of four 

massive quarks and make a comparison between the massive and massless approximation for 

the decay of the Z boson into four quarks jets. Finally, in section 5 we summarize our results. 

2 Matrix Elements 

In this section we present the exact calculation of the matrix elements for the decay of the 

Z boson into two pairs of massive fermions, fi and fi, of mass ml and m2 respectively, 

z + fl(Pd + A;(Pz) + fZ(P3) + &l(P,). (2.1) 

This decay may occur at O(o*) via photon or Z boson exchange, or, in the case of Z -+ 

ql&qv%, at O(ai) via gluon exchange. Rather than compute the fuU squared matrix ele- 
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ments directly for each of these processes, we choose to use a spinor technique to calculate 

the helicity amplitudes for the generic Feynman diagrams shown in Fig. 1 for the exchange 

of a vector boson V. The full squared matrix element for a particular process may then be 

constructed by summing the generic helicity amplitudes over the exchanged vector bosons 

which contribute and then squaring. Fig. lb is related to Fig. la by the exchange of fi u fi 

( 
- - 

pl ct ps) and fl c) fi (pz c pd), while Figs. lc and Id only contribute when the ferrnions 

are indistinguishable, fl = fa, and are obtained by exchanging fi and fi (pl u p3) in 

Figs. la and lb. In this case, due to the exchange of anticommuting fermion fields, there is 

a relative minus sign between the diagrams that ensures that each helicity amplitude vanish 

when both fermions (antifermions) have identical quantum numbers. 

Although the spinor technique of Ref. [13] is extremely convenient for computations in- 

volving massless fermions, it is rather more cumbersome when the (anti)fermions are mas- 

sive. In this method, each massive four vector is written as a sum of two lightlike mo- 

menta, and each massive (anti)fermion spinor then expressed as a linear sum of two massless 

(anti)fermion spinors with opposite he&cities. In general, use of this method to describe a 

system containing four massive fermions would necessitate the introduction of eight mass- 

less momenta. However, in the special case where each fermion is accompanied by an an- 

tifermion, the two lightlike momenta describing the fermion may also be used to describe 

the antifermion. For example, we can find lightlike momenta q1 and qg which describe the 

fermion pair flfl with mass mr and momenta pi and ps, such that, 

{ ++;~;:[:]j +-J 1 (2.2) 

where, since q: = qi = 0, 

Tn: = p; = p; = 2zy(q1 . qz). (3.3) 

The parameters z and y can be covariantly defined in terms of the mass of the prpr CM 

system, Afrr, and the velocity in the CM frame, &r, 

such that, 

N2 = (PI + P#, Pl2 = 1 - 3, (3.4) 

z= %+P12), 
4 Y= qwP12). (2.5) 
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This correspunds to the choice, 

(41 .q*) = 2. (2.6) 

In the limit ml + 0, y also tends to zero and q1 and qa become parallel with pi and p2 

respectiveiy. In the same way, we may describe the fermion pair fzj2 with mass mr and 

momenta pa and pd in terms of two lightlike momenta q3 and q4, 

{ +f;:;: )-( -=] . (2.7) 

us and z are defined in the psp, CM frame by relations anaiogous to eqs. (2.4) and (2.5), 

and, as mr + 0, z -+ 0. In this way the four fermion final state can be described by four 

lightlike momenta, rather than eight, in a way in which the massless limit is easily taken. 

As mentioned above, the spinors of the massive fermions are given by a linear combination 

of two opposite helicity massless spinors. We use, 

%(Pl) = 5:~ %(d + h a-(‘2 ) 

fqP1) = &8;, a+(qz) - 6 ti-(q:): 

(2.8) 

2 WV 

"+(P2) = -$I %('d - & “-(Pl)r (2.10) 

u-(P-2) = -$12 u+(Q) + 6 u-(Q). (2.11) 

The spinor products, sij and sIj are given by, 

Sij = C+(q;)U-(qj) = -8ji, (2.12) 

and, 

8;i = ti-(qi)U+(qj) = -8;, (2.13) 

where u+(qi) denotes the positive (negative)-helicity spinor associated with the lightlike 

momenta qi. The absolute square of the spinor product aij is related to the vector product 

of qi and qj by, 

l%jl* = 2 (qi ' qj). (2.14) 

For our choice of ql and q2, aI2 = 2 &, and, in the massless limit (y + 0), the massive and 

massless spinors are identical up to an overall phase. The spinors describing f2 and fr are 
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simply obtained by the replacements, 

SX(P3) = CX(Pl) (41 + q3, qz --t 94,” -+ w,y -+ z}, (2.15) 

udPd = 4PZ) In* --t q3,qz + q,,z -+ w,y + 2). (2.16) 

A convenient choice for the numerical evaluation of matrix elements expressed in terms of 

the spinor products is [13], 

a;j=(q:+iq:)~~-(q~+iq~)~~, 

where, 

& = (nP,dr 8, d). 

The coupling of a vector boson V with fermion 3< is defined to be, 

(2.17) 

(2.18) 

- i(P + a’v7s)7’, (2.19) 

wherev’” and 8’ contain the coupling constants and are related to the left- and right-handed 

couplings by, 
iv CL,R = v iV iV Fa . (2.20) 

In the case of coupling to photons or gluons, the axial coupling oiv is zero and, 

i7 _ i-r 
CL -CR, 

ip _ 
CL - c;. (2.21) 

Finally, the polarization vector of the initial Z boson is described by two more lightlike 

vectors, qs and qe, 
CA _ sf; = - Mz ~x(Qs)7%(Qe). (2.22) 

By making the specific choice, 

(2.23) 

both the averaging over the spin of the Z boson and any spin correlations arising from the 

production of the Z boson are automatically included. 
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2-l 2 + fifififi 
w= now turn to the helicity amplitudes describing the generic diagrams of Fig. la, denoted 

by, 

M”“(LL,h,~~;Xs), (2.24) 

where A; (; = 1,4) is the helicity associated with momenta p; and As that associated with 

momenta qs (and 46). There are four independent amplitudes, 

J’@(+, +, +, +; +) = (w;” + zc;“) CR P,‘,x 
* 

5125358;4518 
C;“Cg chZ&’ 1 . . 
- - - - 8138163~3843 

CgCiV C;“Cg 
--- 

D1 & D1 DP I) 
* 

f 481~8~~ 
xc&zc~v 3 ycycy 

D2 
12354 - D1 3z,as.] - 4s1& [zc;;v 3~s - “5:” 31w] } , 

(2.25) 

M OV (+,+,+,-;+) = mz CR P,‘,x 

m:(w + 2)’ 

M? 
(cg - c;v)(c;” - &“)x 

(2.26) 
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M”“(+,-,+,+;+) = 2 ml (WC;” +&) c, P,‘,x 

{ + 2443 [ q815.9~3 - q.,,,,,] - y81,83s [ ?8;,8;, - q8;,&] 

+ cjvfc;v 8138;g -3 hsJ;, +&s 
1233, - - Dl D1 3;1,3e 1 + c;“cy -3 Dl 313.5, - 

(2.27) 

.V M (+,-,+r-;+)=mlmzC~Pa~x 

2(w + 2)’ 

MG 
(cg, - c;v)(c;v - cy,x 

( 
XC? 

--51642 [9& + W;e] + YCiZ 
D1 

-3124e [Wjz + 546421 
D2 

+ 
& YCY D 81~8;~ [8318;g + W;,] - 

a 
-8a18;, [8353;1 + 8,58;4 

> 

XCgC;" 
l - 

Dl 
31~8~3 4”83383z3 - 4”3,28;3 l [ ] D1 + “$:“v 8138;~ [C;v8358j3 - C;v8,&] 

+ ycycg 

D1 
3~18;~ [C;v335S;1 - 4”8,&] - “‘$~” 83541 [C;v831Sj3 - &,18;g] 

+ -816 gc;v c;v4, 32134s - $a;, 32143s 1 - D1 
-8;3 C;ZC;V DZ [Civ 814 312364 - c;v%3 312453 1 

w 

+ Dz 
815 [ Civa;, 31~3 - Civ-$, 311r3a I 

C;“C;’ 
- -& [&2r 

DI 
311354 - C;‘823 311,63] }. 

(2.28) 

The fermion and vector boson propagators are, 

i=l,2 

(2.29) 

i = 3,4 

and 

p;; = 
(Pi + pj)' - if+ + il?VMV ’ 

(2.30) 

where IMV and rv are the mass and width of the vector boson V. In addition. we have used 
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the auxiliary function, 

Ejklm = 27 3i13Jm + y SjlSi,,, f (W + 2) 8kl8k. (2.31) 

The terms proportional to &I;’ come from the p*py piece of the V propagator. These terms 

are always multiplied by mz, which ensures that the axial current is conserved when ml = 0, 

and by (c$ - ci”) so that the vector current is conserved for all fermion masses. 

The remaining four helicity amplitudes with X1 = As = + are obtained by the replace- 

ments, 

M”“(+,b-,-;+) = MaV(+,b,+,+;+) {qa ++ q,,c;v t-t $}, (2.32) 

M”v(+,b-,+;+) = M”‘(+,Xz,+,-;+) {c~~-c;“}, (2.33) 

while the helicity amplitudes with either X1 = - or As = - are given by, 

M”V(-,-X~,-X,,-X,;+) = M’“v(+,Xa,X~,X,;$) {ps ++ qs,c’,v ++ c$>, (2.34) 

and. 

M’V(~~,~z,hX~; -) = MaV(X~,X~,X~,X~;+) (qs ++ q6,c.s H CR}, (2.35) 

where the exchange, ct t--t cg, is over all fermion couplings 7i with all vector bosons v. 

Finally, the helicity amplitudes for the generic Feynman diagrams shown in Fig. lb are 

obtained kom Mav by the permutations, 

M**(h, h, b. XI; A,) = 

M”*(LhL~,;~~) {a t--t qarqz c-t ql,c:’ ++ c:‘, 
(2.36) 

m~ttm~,rHuJ,y~z 1. 

These permutations also imply that D, c) Da, D1 ct D,, P,‘, tt P$ and 7 H p where, 

%jkh = &jklm {2:-=b?J*zl (2.37) 

The full helicity amplitude for the decay of the Z boson into two pairs of different fermions 

is, 

W:A,A,A,A~ = C M”v(~~,X~,~~rh;~s) + Mbv(X~,&,h~~;~~)r (2.38) 
V 
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where the sum is over all contributing vector bosons V. The summed and averaged squared 

matrix elements are obtained by summing squares of the 32 contributing helicity amplitudes, 

IM/‘= C, a,=*?=, * IMLX4~ I2 7 (2.39) 
I . 2 

where the colour factor C, depends both on the fermions produced in the decay and the 

exchanged bosons. For gluon exchange (2 + ql&qa&.) CF = 2, while for 7, 2 exchange, 

- - 
z + e,e,e,e, 

z + e&,6 (2.40) 

z + q1q1q2-32 

When the Z boson decays into two pairs of like fermions, the graphs shown in Fig. lc and Id 

also contribute. Although there are some simplifications from the fact that ml = ml = m, 

c~,~ - L,R - cL,R and ry = wz, the particular choice for the physical quark spinors (eqs. 1v _ p - v 

(2.8)-(2X), (2.15) and (2.16)) is not quite as convenient as before. Nevertheless, the generic 

digrams of Fig. lc are once again described by four independent helicity amplitudes, 

M=“(+,+,+,+;+) = CR PAX 

(2.41) 
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McV(+,+,+,-;+) = 2m CR PAX 

+ cKcK(w + 2) 

D1 
E W&14~ ( -%sj* + s4&) - z&& (s319 ;a + &)] 

+ m(cf; - CK)’ 

4M+ 
(2.42) 

M”(+,-,+,+;+) = 2m CR P:X 

+ z(c,‘)‘c; 
[ 
2 -,3152 + “$y ‘3 L31m 1 - uJ(c;)‘c$ *3z18 + 931P3$, [ 1 

+ 4f,vG(Y - z) z,z + & 
03 

[ L R] %5& 

+ =Lv=Jaz + Y) 
D3 [ 4Q434s (%44 + m;J - YC5334, (313s;g + s&)] 

+ m(c4; - CK)’ 

4M; 
(2.43) 
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M"(t,-It,-;+)=& PAX 

+ 4c,vcX(z + Y) 
D3 [ =LzJ*3s;B ( J15J;3 t s25s;3) t ywc~3353;, (sl*s;sj t 3*,3;$) 1 

4c;c;(w + z)’ - 
Da 1 ( zzc~*& ~314s + s41J;g) + Yw&3;* (33543 t J*sJ;~)] 

_ ,,2 (cP4 
D3 

Js,S358;& + .7d(c~~cz J~~S~,8;3S;3 

_ ym* ‘$I:“” %13,63;,3;~ + tm3(C~:e~S,3d*19;39~~ 

+ mz(c,v)zc,z 1 1 
+ 4rr?c;c; 2-Y w w-z 

03 
c~J,5*;~ - &*j* 1-I. + D2 $W;J - 4W;,]) 

+ mY4 -a2 A 
2M; 

(2.44) 

The contribution from the p“p” piece of the V propagator is again proportional to m (9 -cx) 

and is given by the functions dx,A, and BxlA,, 

d++=+&Z '[ JlZ% ~*15*;, t yszss;, t z33ssj,] 

+ &yjy364, [YJl& + WJl& t 25*3431 

4 + &=--*15*;* [w34g t Y3233;,3 + WJ,3431, 
D2 

A-, = + ,/G--J,& [zw;, t yszss;, t z3354,] 
D1 

(2.45) 

(2.46) 
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and, 

B ++ = - EZ *13Jl* d-- * - Jyvr *34*;,, 

B+- = +,.G *~,a;, t &E a&. 

The other 28 helicity amplitudes are obtained by the simple replacements, 

(2.47) 

Mcv(X,,Xz,-X,,-X,;X,) = Mcv(X,,X~,X~,A,;Xs) {qz t-t q,,w ++ z}, (2.48) 

M’v(-~~r-~~,~3r~4;X5) = McV(X1,Xz,A3,Ar;As) (41 +-+ qa,r H y}, (2.49) 

Mcv(hh,hh-~~) = McV(X,,X,,X,,X,;A,) {qs t-1 qe,CR ++ C,}, (2.50) 

while the helicity amplitudes for final set of diagrams in Fig. Id are obtained by the permu- 

tations, 

MdV(Lh~3r~4;~5) = McV(~,,.A,,X,,X~;X,) { 9 t--t q3,q1 - q4,2 ++ W,Y f-t 21, (2.51) 

where the exchanges, 

3 ++ F‘, D1 u D3,D1 ++ D,, and Pl; ++ P3\, (2.52) 

are also implied. 

The summed and averaged matrix elements for Z + ffjrf are given by, 

IM(* zz F 
,i=~=l,,( lMOxLXrXsj* + Ip~La,xd/* 

-IF (Ma* a,a,a,a,a~M~~~a,a~ + M~~~a,a,a~M;1’a,a,a,a~)} 9 

(2.53) 

where IF = 1 for 7, Z exchange and 1~ = -$ for gluon exchange. The factor l/4 is the 

phase space reduction factor for two pairs of identical fermions. As before, 

M:ara,a,a. = C M’v(G41,~3,~4;~5) t M”(XI,X~,X~,X,;A~). (2.54) 
V 

To make sure that the interference between the diagrams of Fig. la(lb) and Fig. lc(ld) is 

included correctly, we have verified numerically that when p, = p3 and pz = p,, 28 of the 32 

helicity amplitudes vanish as required by Fermi statistics. 

So far we have implicitly assumed that the exchanged bosons are either a photon and Z 

or a gluon. In general the amplitudes for colour singlet and colour octet exchange do not 
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interfere with each other and the total width is just the sum of the O(o’) and O(ai) pieces. 

However, for the case of four identical quark production only, the interference is not zero 

and there is an O(rra,) contribution. The summed and averaged squared matrix elements 

for this interference term are given by, 

I”l’ = - ,=& ,{ M%~~~,~.M;:%~a,a~ + M::~,a,a.M&,a~a, * , . \ (2.55) 

+ M%a,a,aP;Cd:a a a + M;“?, a x M;f’: a a a L I 3 4 I I 1 3 * L Ll,4, 7 
I 

where now, M~,‘&,a,XI refers to the helicity amplitudes, eqs. (2.38) and (2.54), summed 

over either colour singlet or colour octet exchange. The colour factor in this case is 4, which 

cancels the identical particle factor of l/4, while the minus sign is due to Fermi statistics. 

2.3 The Limit Of Massless Fermions 

Before leaving the subject of the matrix elements, it is interesting to extract the massless 

fermion limit, ml = 0 and m* = 0. Since helicity is conserved at each vertex for massless 

fermions, the helicity amplitudes simplify dramatically and, 

Moav(+,+,+,-;t) =M”“V(t,-,+,+;t)= MoaV(+,-,+,-;+) =o, 

while MoaV(t, t, +, t; +) is given by, 

(2.56) 

MoaV(t,+,+,t;t)= 4 z UJ c;zc;vc;vCn Pj;x 

91343 *IS*;, (2.57) 

- (z *15*;, t w 8354,) - - Dz D1 (z *23*;* t w 3434,) 

which, when z and w are reabsorbed into the spinor products gives the usual result [13]. 

The other seven non-zero helicity amplitudes and the amplitudes describing the graphs of 

Fig. lb are obtained by the usual permutations, eqs. (2.32) and (2.34)-(2.36). 

The helicity amplitudes for the decay into like fermions also simplify in the massless limit, 

however, due to our particular choices for the fermion spinors and the permutation symmetry 

amongst the amplitudes, care must be taken. As in the unlike fermion case, there are eight 

non-zero helicity amplitudes, such that both XrX, and X*Xs are positive, i.e. no helicity flips 
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at the vertices. We have? 

Mocv(t,t,t,+;t) = CR Pl;x 

4yz(c9'cf - 
1 
Jl& - 

D3 
(Y *1s*;* + 2 Wj') t = Y *23*;$ t 2 J*3J;g) 

Da 
* ( 1 

1 
33s*;, - 4+w(c!J'c~ - *13*;* 

D3 
(z **& + w .w;g) + - 

Da 
(z *15*;, + w J&) , 

and, 

A@='(+,--,-,+;+) = CR Pl",x 
4c;cg 

+ 03 -4 t*W433& (s15.c 14 f J’54,) f YZ434643 (3133;g + 3*38;8) I 

(2.58) 

(2.59) 

4cxc; 
[ 

'2 - - mu cLs26s;1 ( * 
Da 

33133g + **1*;$) + yz*c~sl*a;, (3364’ t J*&)] . 

In the massless limit, y --t 0 and z + 0 and the terms proportional to y and z in these 

amplitudes do not contribute. However, the two other nonaero amplitudes with As positive 

are obtained by the permutations, 

M°CV(-XI, --AZ, -X3, -a,; t) = Mocv(~1,~*,X3,A,; +){a ++ q*,q3 ++ q,,t * Y,W * z}, 

(2.60) 

and these terms do then contribute. Finally, the four non-zero amplitudes with As negative 

and the amplitudes describing the diagrams of Fig. Id in the massless limit are given by the 

usual permutations, eq. (2.51). 

3 Phase Space 

Once the matrix elements are known, the total width may be obtained by numerical inte- 

gration over the four body phase space dlips(4), 

6’(pz - p1 - p* - p3 - p,). (3.1) 

However, due to the large peaking in the amplitudes, the phase space integral requires 

extreme care. In the worst case, (Z + ffjf), there are eight propagators which may 
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become large in different regions of phase space. In the massless fermion case, these propa- 

gators contain the infrared and collinear singularities which cause the total width to diverge 

in the absence of the O(a*) radiative corrections. When the fermions are massive, these 

divergences are softened into mass singularities and lead to large logarithms of the form 

log(Mz/m.) N 19. Since the correct choice of integration variables is vital to obtain numer- 

ically stable results, we will briefly describe them. 

When the Z boson decays into two unlike fermion pairs, there are oniy six potentially 

large propagators. The phase space is then divided into two regions, 

&a > &I or &a < s34, (3.2) 

which are related to each other by the exchange p1 u ps, p2 c) p, and ml +-+ mz and where 

Sij = (pi + pj)’ (not to be confused with sij). Let us assume that S12 < S,,. The worst 

possible behaviour of the amplitudes in this region is proportional to, 

1 1 1 1 

.%a Da Da cc .%a En 9 - Es 
+ 1 +-EE, ’ 

(3.3) 

where Ei is the energy of particle i in the 2 rest frame and El2 = El + E.,. The phase space 

integral may be conveniently expressed in terms of the singular variables S,z, El2 and Ei, 

dlips(4) = $--$ dSlz dfl;, 
J 

1 - 4m’ - dE12 dE; dR; d&, 
s13 

where i = 3 or 4. a;, are the angles of P; in the rest frame of & +pi, while ai are the angles 

of $7 and 4; the angle of P;+P;, around p‘i in the 2 CM frame. The most singular parts of the 

amplitudes may then be smoothed by a simple change of variables, e.g. dSla/Slz -+ dlog &. 

Although the angular integrals have trivial volumina (4~ for da;,, dni and 2n for d&), the 

limits on E; are more complicated, 

(3.5) 

while the boundaries of the &a and El* integrals depend on the fermion masses; 

Mi 4m; < &z < - 
4 and &<Eu<T. 
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Mi 4m: < 5-12 < - 4 and ,/ii < ,?$z < min F, Mg -;;’ + ‘l,j . (3.7) 

4mf < SIZ < (Mz - 2m2)’ and & < ,J& < Mi -2”:; + 42. (3.8) 
z 

The boundary condition 4m: < S 11 < Mi/4 looks somewhat unnatural, however, if 

fi > MzJ2 then we cannot have & > Mz/2 as well and this implies Sis > $4 con- 

trary to the initial assumption. To obtain the full phase space, the most efficient way is to 

choose either Sis or Ssd to be the smaller and then to double the phase space volume to 

account for the excluded region. Furthermore, by allowing each Sij to be chosen to be small 

50% of the time, the Monte Carlo integration acts as an event generator. 

The phase space for the decay of the 2 boson into two like pairs of fermions is more 

complicated since both Sss and Sr, might also be small. There is no clean way to divide the 

phase space into four regions with, for example, S ,, < Ssl, 4, and Ssr which is necessary 

to have a numerically stable answer. However, by dividing the phase space into two as for 

the unequal mass fermions, for example Sss < S i,, and then discarding phase space points 

where Sts < Ss, or Ss, < Sss, the integral may be accurately evaluated. In this case, since 

only one quarter of phase space is kept, the phase space volume should be multiplied by 4 

rather than by 2. As in the previous case, to ensure that all regions are well sampled, one 

should choose each S<j to be the smallest in 25% of the data points. 

4 Numerical Results 

Using the matrix elements presented in section 2 and the phase space described in the last 

section, it is now straightforward to compute the partial widths for the decay of the 2 boson 

into four fermions, 

I--= &J IMI’ d&w(4). (4.1) 
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As already mentioned, the inclusion of the fermion masses leads to a finite result for the 

partial width by modifying the infrared and collinear divergences to give a mass singular- 

ity. The resulting widths are logarithmically dependent on the fermion mass and diverge as 

rnf -t 0. This apparent disaster is rectified when the one and two loop graphs, for example, 

the two loop vertex correction, which contribute at the same order in perturbation theory 

are included. The mass singularity is cancelled and the total contribution to the 2 width 

is finite as mf -+ 0. We have not attempted to estimate these loop corrections here and we 

emphasize that the partial widths presented here should not be added directly to the total 

2 width. On the other hand, realistic estimates for the observable widths may be obtained 

when the fermions are energetic and well separated. 

4.1 The O(CI?) Partial Widths 

Let us first turn to the total widths for the O(2) four fermion decay which are shown in 

Tables l-3 for the three distinct final states, .!@“P, q+!i and qpq’p’. Since the decay into two 

pairs of fermions in the same weak isospin doublet, e.g. 2 -+ e+e-v.~~., is also mediated by 

W boson exchange [14] we do not quote results for these decays. 

As is clearly seen in Tables 1-3, the largest widths occur when the fermions are as light as 

possible. This is due to the effects of the mass singularity. The dominant contributions have 

the following typical event structure; one pair of back-to-back fermions with an invariant mass 

close to MZ generated by the decay of the 2 boson with one of the fermions accompanied by a 

second pair of soft fermions arising from the conversion of an almost collinear virtual photon. 

Lighter fermions allow the virtual photon to be closer to its mass shell and lead to a larger 

contribution to the width. One exception to this, however, is four neutrino production which 

is only mediated by 2 exchange. Consequently, there are no soft or collinear divergences. 

The total contribution is, 

C l?(Z -+ vfivfi) = 19.5 eV, (4.2) 

which is equivalent to increasing the Z width by 1.16 x lo-’ neutrino generations. In fact, 

the pure Z exchange contributes at the level of a few eV in all decays, and, compared to the 

pure photon exchange contribution, is negligible. 

The results presented here differ by a factor of two from the preliminary results quoted 
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in Ref. [S], due to a double counting in the phase space. There is also an approximate factor 

of two difference between Table 2 and Ref. [4], h owever, the difference is more fundamental 

in decays involving r leptons and light quarks. Let us now be more specific and attempt to 

resolve this difference. To do this, we consider the production of uE or &pairs in association 

with either e+e- or r+r-. In the case of q@+e- production, the electrons originate mainly 

from the virtual photon (m. < ms) so that l? N (u,” + ai) ei and, 

qz + WTefe-) _ TJ; + a; 2 
qz h d2e+e-) v.j + aj ea 

x 3.1, (4.3) 

which is in good agreement with the entries in Table 2. (Since we use m, = md, any quark 

mass effects cancel in the ratio.) In T+Y production, the situation is reversed (m, > 

ms) and the quarks are preferentially produced by the photon. The total width is now 

proportional to the square of the quark charge, r N ei and, 

r(z --+ tLw+v-) et 

qz -+ A&+~-) N 3 = 
4. 

Again, this agrees well with the entries in Table 2 and disagrees with Ref. [4] which finds a 

ratio of only 2.5. 

To illustrate the pronounced effects of the fermion mass, we consider the decay Z + 

I&+!-, where e = e, ,u, 7. This covers the three regions m. < mu, m, N m, and m, > m,. 

The invariant mass distributions of the lepton pair, ml+i-, and quark pair, m,o are shown in 

Fig. 2. The two distributions are correlated - a small value of m!+(-, corresponding to a soft 

virtual photon, 7’ -+ e+L-, is balanced by a large value of mvil arising from Z -+ u+i7’ decay, 

and vice versa. The small m,, (7’ -+ UC) and large m(+t- (Z -+ e+l-7’) regions depend 

only on m, and are insensitive to the lepton mass. Conversely, the large mUir (Z -+ wi7’) 

and small m(+f- (7’ -+ e+L-) regions are extremely dependent on the lepton mass and show 

the diminishing contribution of the photon pole as ml increases. Since the bin size (2 GeV) 

is much larger than the mass of both the muon and electron, the ml+(- distributions for 

Z -t uiie+e- and Z -P uiip+p- differ only in the first bin, peaking at 1.7 10-s for electrons 

and 1.9 lo-’ for muons. 

In the same way, the lepton energy spectrum, dl?/dE (+, shows the same underlying struc- 

ture. The large Et+ region is dominated by leptons produced directly by the decaying Z 

boson and is independent of the lepton mass, while the contribution at low EL+ due mainly 

18 



to lepton production from the conversion of a virtual photon drops rapidly with increasing 

w 

It is clear that the dominant part of the four fermion decay width occurs when the fermions 

are either very soft, El - 0, or when they are not well separated, 6’ffg - 0. It is precisely 

these regions which are difficult to observe experimentally. A more relevant experimentally 

observable quantity, however, is the partial width for the decay of the 2 boson into four 

energetic well-separated fermions. To simulate experimental particle separation requirements 

we impose a cut on the invariant mass of all fermion pairs, rnff, > 10 GeV. For our illustrative 

case we find, 

r(Z~uae+e-)=P(Z~uii~+~-)-P(Z~uartr-)-1.6keV, (4.5) 

corresponding to a branching ratio of 6.4 x 10-r. The mass dependent singularities have 

been removed by the cut on the invariant mass of each fermion pair, and the partial widths 

are now almost independent of the fermion mass. 

In Tables 4-6 we show the O(cc’) contributions to the partial widths for Z boson decay 

into L+L-L’+L’-, qijt?L- and qqq’$ with an invariant mass cut of 10 GeV on each possible 

pairing of fermions. The results in the massless limit are shown in parentheses. In alI cases, 

even for decays involving b quarks, the massless approldmation agrees well with the exact 

result. The total width for the decay into four ‘well separated energetic’ leptons is, 

C r(z --t ezl‘r) - 4.4 kev, (4.6) 

while the partial width for the production of a large mass isolated lepton pair accompanied 

by hadrons is, 

c r(Z + l&q) - 13.4 keV. (4.7) 

These widths correspond to branching ratios of 1.7 x 10-s and 5.3 x 10-s respectively, and 

should easily be within the range of experiments at LEP. Finally, the O(as) contribution to 

Z decay into four ‘well separated quark jets’ is 6.3 keV. Although this leads to an observable 

rate, it is swamped by the O(CY:) decay into four quarks which we will discuss in section 4.3, 

and the even more important Z -+ qijgg decay. 

Not only is the total rate independent of the fermion mass, but the invariant mass and 

energy distributions for the three Z -+ u%e+!- decays, shown in Figs. 4 and 5, are extremely 
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similar. In fact, the distributions for e = e and e = p are identical within the statistics of 

the Monte Carlo, and we show one curve for .! = e = p. A small effect due to the mass 

of the T is visible at small mt+l- (and hence large mu3 and small Et+. This effect is now 

at the few percent level. There is still a peaking towards sm.sIl invariant masses due to 

the photon pole, however, the peak in the lepton energy distribution has been completely 

removed. Furthermore, the small differences between the ml+c- and mUG distributions are 

due more to the different couplings of the up quark and charged leptons with the 2 than 

the difference in mass. In fact, since the mass dependence has been almost totally removed, 

taking the limit of massless fermions should be a good approximation. In Figs. 4 and 5, 

we also show the massless approximation to the partial width. Within the Monte Carlo 

statistics no difference between the massless case and the results for 1 = e and I = p can be 

observed. This test provides both a check on the full calculation and a much faster way of 

estimating the partial width. 

4.2 Z -+ Hp+p- + ffp+p- 

One practical application of the four fermion decay is in evaluating the background to Higgs 

production at the Z resonance. As mentioned earlier, due to the large HZZ coupling, the 

branching rate for the Bjorken process [s] of eq. (1.1) may be as large as 10-s. The Higgs 

boson then decays preferentially into the heaviest allowed fermion pair, namely H --+ b6, 

CE and r+r-, leading to a final state containing four fermions. In this section we compare 

the two decays specifically for the case when the virtual Z boson decays into a muon pair, 

Z’ ---t p+p-, and, since it is difficult to efficiently distinguish quark jets of different flavours, 

we sum over all possible quarks, Z --t qijp+p-. 

Although the total rates are comparable, the two mechanisms lead to rather different 

distributions in both m,, and m,* as shown in Figs. 6 and 7. The muons from the virtual Z 

in the Z -+ Hp+p- decay have an invariant mass peaked as close to Mz as possible, while 

the muons produced in the 2 -+ qcp+p- decay are peaked at both small and large invariant 

mass reflecting the two contributions from 7’ + p+p- and Z --t p+p-7’. The dominant 

part of the background is at small invariant mass and is easily removed by a cut on the 

lepton pair invariant mass. As can be immediately seen from Fig. 6, the four fermion decay 

of the Z boson does not provide a serious background for Higgs bosons with mass ma 5 45 
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GeV. 

The invariant mass of the quark pair is, in principle, an accurately measurable quantity 

since, by momentum conservation, it can be determined directly from the lepton momenta, 

1 mpg = Mi - 2Mz( E,+ + Er-) + m:+,-. (4.6) 

The experimental resolution on the invariant mass of the quark pair is therefore determined 

by how accurately the lepton momenta are measured, and, when the leptons are energetic 

(which is the case when the Higgs boson is light) the resolution on mpQ may be quite poor. 

The two processes lead to quite different m sq distributions: The quarks from the Higgs decay 

have an invariant mass peaked at m R, while those from the four fermion decay exhibit a 

similar structure to the mP+,,- distribution. Fig. 7 shows the mpQ distribution assuming a 

resolution of 2 GeV. With this resolution, the signal clearly stands above the background 

provided ma 5 45 GeV. However, by making a cut on the invariant mass of the lepton pair, 

m,+,- > 20 GeV, the background is reduced by well over an order of magnitude at large 

mpQ, while the signal is almost unaffected. This is summarised in Table 7, where we give the 

number of events from both the signal and the background per GeV of resolution for a data 

sample of 10’ Z events. Since the width of the Higgs boson is very small, rR - 2 MeV for 

mm = 50 GeV, the signal events all populate one bin. The number of background events, 

however, is obtained by integrating dr(Z --) q@fp-)/dm,q over a range of msp which de- 

pends on the experimental resolution. The signal clearly dominates provided the resolution 

is less than a few GeV, and the four fermion decay is therefore not a severe background to 

Higgs detection in Z decay. 

4.3 The O([Y~) Partial Widths 

Approximately 70% of Z bosons decay hadronically, and therefore provide a good testing 

ground for QCD. The strong interaction is important both in radiatively correcting the total 

Z width and in introducing new decay topologies. The full O(uf) corrections to the Z width 

have recently been computed [15] and lead to an increase in Tr of about 5 MeV, which is to 

be compared with the more important O(a,) contribution [16] of about 90 MeV. Meanwhile3 

the exact leading order QCD matrix elements for four jet [9,10] and five jet [11,12] decay 

have also been computed in the limit of massless partons. In this section we give the (finite) 
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results for the production of four massive quarks at O(a:) and make some comparisons with 

the massless case. 

The partial widths are shown in Table 8 where we have taken m, = rnd = m, = 0.3 GeV 

which represents a typical hadronic mass scale, m, = 1.5 GeV and rn6 = 4.5 GeV. We have 

taken the running strong coupling constant to be, Q,(M~) = 0.11 which is the value extracted 

from determinations of a.(Qs) at lower Qs [17]. Due to the fact that the exchanged gluon 

is massless, the partial widths increase with decreasing quark masses. Since QCD is flavour 

blind, we find, 
r(z + utiaa) 

r(z -+ d&s) 
N 4 + 4 + 4 + 4 = o.8g 

v: + =i + v: + a; 
1 (4.9) 

where all mass effects have cancelled in the ratio, and which agrees well with Table 8. Further- 

more the widths for the production of a heavy quark with any light quark are approximately 

=w4 

I?(2 + Q&x),- !?(Z + QQdd) = r(Z + Q&a), (4.10) 

which is in good agreement with Table 8 for both c and b quarks. For identical light quark pro- 

duction, there is little interference between the contributions from Figs. la,b and Figs. lc,d 

due to the rather distinct kinematic configurations of the dominant regions of phase space 

and the following relations are also obeyed, 

r(z -+ utiuu) 

r(z + uzLdd) N 
u: + a; 

v: + a:, + v: + a$ 
= 0.44, 

and. 

(4.12) 

In both cases, the entries in Table 8 are slightly smaller reflecting the destructive interference 

caused by the colour factor, Tr(T”TbT”Tb) = -i, between the two sets of diagrams. This 

contrasts with the O(a*) process where there is a slight constructive interference. 

One sees that the total contribution is around 130 MeV (in contrast to the O(o’) con- 

tribution of only 0.17 MeV), which reflects the fact that we have not considered the loop 

diagrams which also contribute at O(cr:). These virtual corrections cancel the mass singu- 

larities and reduce the contribution to the full width. On the other hand, the four b quark 

final state, Z -+ b6b6, is in principle completely identifiable since the decay products of soft 

b quarks can be detected. For a data sample of 10’ Z decays, there will be approximately 
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1400 events containing four b quarks. One can apply similar arguments for decays involving 

c quarks, yielding 6300 CZCE events and 9400 czbg events in the same data sample. 

The light quarks, however, are not directly identifiable and appear as jets of hadrons. Two 

frequently used methods to define jets are using either the Sterman-Weinberg jet resolution 

parameters c and 6 [18], or by imposing a minimum invariant mass on each parton pair, 

(Pi + Pi)’ , y 

M; m’n’ 
(4.13) 

Both methods have been used in lower energy efe- experiments and agree well with the 

data [19]. In Fig. 8 we show the y,,,;, distribution both summed over all quarks and for the 

b&6 final state. The rapid growth as y,,,i,, -+ 0 refiects the mass singularity once more, and, 

in the limit mv -P 0 would diverge. The b&b6 contribution, however, vanishes at y,,,i,, - 0.01 

due to threshold effects. For comparison, we also show in Fig. 8 the result for massless 

quarks where we have imposed the cutoff rnff, > 10 GeV. Unsurprisingly, the distribution 

summed over all quarks is well described by the massless result, while the b&b6 distribution 

is slightly harder than in the massless limit. 

As mentioned in section 2, there is an O(acr,) contribution to the Z decay width into 

four identical quarks, which is suppressed by O(a/cz,) relative to the O(of) partial widths. 

Furthermore, since this contribution arises solely from the already small cross terms, there 

is a further suppression. We find, 

r(Z -+ UOU~) = 55 keV, 

r(Z -+ dldd7 = 17 keV, 

r(Z + c.%) = 24 keV, 

r(Z + b&b6) = 1.2 keV, 

(4.14) 

while the I’(Z ---t sL~s) partial width is identical to that for the decay into four d quarks. 

These widths, which are large compared to the O(as) partial widths are nevertheless still 

very small, - l%, compared to the O(a:) contribution. 

As a final comment, let us note that although the Z + qqqij rate is quite large, I - 3 MeV 

for Y,,,;,., > 0.02, compared to the full O(af) contribution of 5 MeV, the Z + qqgg rate is 

23 



much larger [q,IO]. 

5 Conclusions 

In conclusion, we have studied the four fermion decay of the Z boson keeping all dependence 

on the fermion masses and have presented some numerical results for both the O(rrs) and 

O(a3) decay. These decay widths, which are finite when integrated over all phase space, 

were computed using the helicity amplitudes presented in section 2. However, the partial 

widths are logarithmically dependent on the fermion mass, and, in the absence of the one 

and two loop radiative corrections that contribute at the same order in perturbation series, 

should not be directly added to the total Z width. 

On the other hand, distinct event topologies may occur, for example, four lepton events, or 

lepton pairs recoiling against one or two hadronic jets. In these cases, the energy/momentum 

and separation criteria necessary to experimentally identify the final state, dramatically re- 

duce the observable branching fraction. We have attempted to simulate realistic detector 

requirements by requiring that all pairs of fermions have an invariant mass, rnff, > 10 GeV. 

In this case, the effect of the fermion mass is much reduced and the full massive matrix 

elements are well approximated by the massless matrix elements also given in section 2. 

Typical branching ratios for the decay into four ‘well separated energetic’ fermions are 

Br(Z --t e+e-e’+e’-) Y 1.7 x 10-e and Br(Z -+ FL-q$ - 5.3 x 10-s and which are 

well within the range of experiments at LEP. 

Another source of four fermion events is the production and decay of the Higgs boson 

via the Bjorken mechanism. We have made a direct comparison between the Higgs boson 

signal and the four fermion decay and find that, due to the rather different topologies, the 

background may be easily suppressed by making an invariant mass cut on the lepton pair, 

leaving a clear Higgs boson signal which is only limited by the integrated luminosity. Given 

10’ Z boson events, the Higgs boson may be clearly seen above the four fermion background 

for ma 5 60 GeV. 

We have also presented estimates for the O(a:) four quark jet final state, although in this 

case, the dominant contribution to four jet events is Z + qqgg. Once again, the massless 
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matrix elements are a good description of the full massive matrix elements for reasonable jet 

definition criteria. Finally, we found a significant branching fraction rate for 2 boson decay 

into four heavy quarks, 
r 
-Ez - 5.3 x 10-3, 
rcz 

(5.1) 

r b6.3 - - 6.3 x 10-3, 
rb6 (5.2) 

rb66b6 - 
rb6 

- 9.1 x lo-‘. (5.3) 
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Table 1 

The O(cr’) partial width for the decay 2 -+ U’t? in IMeV. For the numerical results 

we have taken A&z = 91.1 GeV in accordance with the latest results from LEP and 

SLC, while the Weinberg angle is defined in terms of the Fermi constant and the 

running electric coupling constant, a(Mz), yielding sins&v = 0.23. 

2 + LU’P’ 

e+e- 

P+P- 

T+T- 

vefie 

“U&4 

e+e- 

0.27 

0.28 

0.17 

6.5. IO-* 

PL+K T+T- Ve% %h 

0.28 0.17 6.5 . lo-” 

0.033 0.031 6.5. 1O-s 

0.031 0.0032 6.5. 10-s 6.5 10-e 

6.5 . 10-s 6.5 . 10- 3.1 * 10-e 3.4 . 10-g 

6.5 . 10-s 3.4. 10-a 3.1 . 10-8 

Table 2 

The O(cz’) partial width for the decay 2 -t h!qp in MeV. For the light quark masses 

we choose, m, = md = m, = 0.3 GeV, which represents the typical hadronic mass 

scale, while for the heavy quarks, we take, m, = 1.5 GeV and mb = 4.5 GeV. 
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Table 3 

The O(a*) partial width for the decay 2 + qijq’q’ in MeV. For the light quark 

masses we choose, m, = md = m, = 0.3 GeV, which represents the typical hadronic 

mass scale, while for the heavy quarks, we take, m. = 1.5 GeV and mb = 4.5 GeV, 

Table 4 

The O(a2) partial width for the decay 2 -+ PPC+L’- in keV with an invariant 

mass cut on each fermion pair, rnf,, > 10 GeV. The figures in parentheses are the 

results from making the approldmation that the fermions are massless. 

2 --t U-e’e’E 

e+e- 

F+P- 

rfr- 

e+e- 

0.53 (0.54) 

0.90 (0.90) 

0.95 (0.90) 

/1+/1- i-+7- 

0.90 (0.90) 0.95 (0.90) 

0.52 (0.54) 0.95 (0.90) 

0.95 (0.90) 0.59 (0.54) 
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Table 5 

The O(o’) partial width for the decay 2 -+ .!+Pqq in keV where an invariant 

mass cut on each fermion pair of rnf,, > 10 GeV has been imposed. The figures 

in parentheses are the partial widths obtained in the limit of massless fermions. 

2 + q&l2 

e+e- 

P+P- 

rfr- 

uii dd 

1.6 (1.6) 0.38 (0.38) 

1.6 (1.6) 0.38 (0.38) 

1.67 (1.6) 0.40 (0.38) 

83 

0.38 (0.38) 

0.38 (0.38) 

0.40 (0.38) 

CE 

1.6 (1.6) 

1.62 (1.6) 

1.69 (1.6) 

b6 

0.42 (0.38) 

0.43 (0.38) 

0.45 (0.38) 

Table 6 

The O(as) partial width for the decay 2 -+ qqq’$ in keV. All pairs of fermions are 

required to have an invariant mass, rnftt > 10 GeV. The figures in parentheses are 

the partial widths obtained in the limit of massless fermions. 

2 -t ml’n’ Idi dd 6.9 CE b6 

uii 1.1 (1.1) _ 0.58 (0.58) 1.9 (1.9) 0.64 (0.58) 

dl 0.078 (0.078) 0.15 (0.15) 0.60 (0.58) 0.17 (0.15) 

I SZ 0.56 (0.58) 0.15 (0.15) 0.078 (0.078) - 0.17 (0.15) 

CE 1.9 (1.9) 0.60 (0.58) - 1.18 (1.1) 0.66 (0.58) 

b6 0.64 (0.58) 0.17 (0.15) 0.17 (0.15) 0.66 (0.58) 0.094 (0.078) 

30 



Table 7 

The number of q@~+p- events from both the signal, 2 -+ Hpfp- -a q#fp- 

with the branching ratio for Higgs decay into c and 6 quark pairs folded in and 

the background per GeV of resolution for a data sample of IO7 2 bosom (J fdt - 

250 pb-‘). The effect of the m,+,- cut on the signal is shown in brackets. 

Table 8 

The O(CY~) partial width for the decay Z -+ qijq’$ in MeV. For the light quark 

masses we choose, m, = rnd = m, = 0.3 GeV, which represents the typical hadronic 

mass scale, while for the heavy quarks, we take, m. = 1.5 GeV and mt, = 4.5 GeV. 

The strong running coupling constant is a,(@) = 0.11. 

z + qqq’q’ 

UQ 

uii dci 

7.0 16.8 

5.7 CE 

16.8 a.7 

b6 

8.0 

dd 16.8 9.3 19.2 9.1 7.9 

s&T+ 16.8 19.2 9.3 9.1 7.9 

cc 8.7 9.1 9.1 1.6 2.4 

I b6 1 8.0 1 7.9 1 7.9 1 2.4 ( 0.35 1 
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Figure Captions 

Fig. 1: The Feynman diagrams for the decay Z + frfrlfrfr mediated by the exchange of 

vector boson V. 

Fig. 2: The invariant mass distribution of (a) the lepton pair, dl?/dm~+~- and (b) the up 

quark pair, dI’/dm,,, for the decay Z --t uri.Pf- where e = e, p and T. 

Fig. 3: The lepton energy distribution dlJ/dE!+ for the decay Z + r&e+!- where e = e, 

pandr. 

Fig. 4: The invariant mass distribution of (a) the lepton pair, dI’/dmrtc- and (b) the up 

quark pair, dI’/dm,e, for the decay Z + ce+e- where e = e = P and L = r 

with an invariant mass cut on all possible fermion pairs, rn,,, > 10 GeV. The 

approxrmate distribution resulting from the use of the massless matrix elements is 

shown crossed. 

Fig. 5: The lepton energy distribution dI’fdEl+ for the decay Z --t uiiPL- where e = 

e = /J and L = r with an invariant msss cut on all possible fermion pairs, rntfl > 

10 GeV. The approximate distribution resulting from the use of the massless matrix 

elements is shown crossed. 

Fig. 6: The invariant mass distribution of the muon pair, dJ?/dm,+,,-, produced in both 

Z -+ q@+p- decay and Z -+ Hp+p- -) q@+p- decay for mn = 5, 15,25,35,45, 

55 and 65 GeV. The branching ratio for Higgs decay into heavy quarks, H --t b6 

and H + CE, has been folded into the signal, while the background is summed 

over all quark flavours. The contribution from Z + 66~+~- is shown separately. 

Fig. 7: The invariant mass distribution of the quark pair, dT/dm,, produced in both 

Z + qqp+p- decay and Z + Hp+p- -+ qqp+p- decay for ma = 5, 15, 25, 35, 

45, 55 and 65 GeV. Both H + b& and H -P CE decays are included in the signal, 

while the background is summed over all quark flavours. We also show the effect 

of making a cut on the invariant mass of the muon pair, m,+,- > 20 GeV. 

Fig. 8: The y,,,;, distribution, dI’/dy,,,i,, for the O(of) 2 + qijqij decay summed over all 

combinations of quarks where y,,,<,, is defined as the minimum value of L% The M; . 
contribution from Z -+ b&bbg is shown separately. As a comparison, we also show, 
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as crosses, the distributions obtained using the massless matrix elements where we 

have imposed the invariant mass cut, rnff, > 10 GeV on all quark pairs. 

33 



1: 
,” I,” 

s- 

Y- N 

7 

w-7 1: 

2 

+ Y 

I,” 

> 

N 

ti 14 2 
kl 

I,” 
u.7 

Y 

G- 
s- 

N 

WI- 

\” 

I,” > 
N 

e.Y > 
s:i, N 

I,” 



rn,b, I I ,,,I,, I I 1,111, I I 1,111, , I rnp’ ’ 

I 

1 : 

I : Ei I : 
aI 
!! : c d ” 

I 

T 
-. 

2 

x . . 
ti 

‘= 
*. 

tz 
t 

N 

ii 

c 

. . . . . . . . 
. . . . . . . . . . . 

0 

b 



;; z 
c!n 

i; 
.: 

G 
A 

;; 
Ll 

E 
h cl 

F2 1 :r 
..,:I . . : A .* ‘r . . 

1 

-1 
. . L 

T 7 ii 
-4 P 0 

r I l lltllll l 1 Ill~A I I ltlll!l YklA I t #iI '1 r- 



dlT/dE,+ 

z- 

m 
7 F2:- 
z 
2 

:: - 

r 

J : / 
*. r 
: -I 

L 
. . I 

:I 
. . J 

. r 
. . 
: 

1 
. . L 
. . r 

.l 
-. . 

.L 

. . 
.r 
. . I 

:s 
. . 
.I 

i : !. 



dl?/dm,+,-- (x10 -7) 

P P 
8 

P 
c: 

P 
g 2 i 7 

G: 

P P 
8 

P 
c: 

P 
g 2 i 7 

G: 

0 I I I I I I I I I I I , I I I I I I I / I I 

: : : : : 

3 
5 N 

6 
V 

r 2, 
0 

e; 

-1 

;; 
ii T -4 x 

# I , , I I I , I I I I I 1 1 , I I , I I I 

0 I I I I I I I I I I I , I I I I I I I / I I 

: : : : : 

3 
5 N 

6 
V 

r 2, 
0 

e; 

-1 

;; 
ii T 
-4 x 

t i 

t# I t l I I I I @I I I I I I,, , , I,, , , I, ,j 



dl?/dm,,- (x10-‘) dl?/dm,,- (x~O-~) 

P P 0 0 8 f 
:: 

c 
0 

,o 
c 



dr/dE,+ (x10 -?I 

. : 
x. 
X 

x 

XJ 

i 

X.1 

i 

. . 

I I 1 
I I I,, , , , , , , ( 

I I I 

3 
G N 

n + 

% -1 



dl?/dm,+.- 

I v 1,111, 11111 dm,m, r , , ,,,,,, I I!, 



dl?/dm,, 

N 

J 

$1 
x 

+ 

-x 

N 

J 

F 

+ 

x 

I 

A 

$1 
R 

+ 

x 

I 

i 

r]J , , , ,,,,,I , , , j 



dl?/dy& [GeV] 


